Repeated Degrees in Random Uniform Hypergraphs

نویسندگان

  • Paul N. Balister
  • Béla Bollobás
  • Jenö Lehel
  • Michal Morayne
چکیده

We prove that in a random 3-uniform or 4-uniform hypergraph of order n the probability that some two vertices have the same degree tends to one as n→∞.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymptotic Enumeration of Sparse Uniform Linear Hypergraphs with Given Degrees

A hypergraph is simple if it has no loops and no repeated edges, and a hypergraph is linear if it is simple and each pair of edges intersects in at most one vertex. For n ≥ 3, let r = r(n) ≥ 3 be an integer and let k = (k1, . . . , kn) be a vector of nonnegative integers, where each kj = kj(n) may depend on n. Let M = M(n) = ∑n j=1 kj for all n ≥ 3, and define the set I = {n ≥ 3 | r(n) divides ...

متن کامل

Asymptotic enumeration of sparse uniform hypergraphs with given degrees

Let r ≥ 2 be a fixed integer. For infinitely many n, let k = (k1, . . . , kn) be a vector of nonnegative integers such that their sum M is divisible by r. We present an asymptotic enumeration formula for simple r-uniform hypergraphs with degree sequence k. (Here “simple” means that all edges are distinct and no edge contains a repeated vertex.) Our formula holds whenever the maximum degree kmax...

متن کامل

3-Uniform hypergraphs of bounded degree have linear Ramsey numbers

Chvátal, Rödl, Szemerédi and Trotter [1] proved that the Ramsey numbers of graphs of bounded maximum degree are linear in their order. We prove that the same holds for 3-uniform hypergraphs. The main new tool which we prove and use is an embedding lemma for 3-uniform hypergraphs of bounded maximum degree into suitable 3-uniform ‘pseudo-random’ hypergraphs. keywords: hypergraphs; regularity lemm...

متن کامل

EMBEDDINGS AND RAMSEY NUMBERS OF SPARSE k-UNIFORM HYPERGRAPHS

Chvátal, Rödl, Szemerédi and Trotter [3] proved that the Ramsey numbers of graphs of bounded maximum degree are linear in their order. In [6, 23] the same result was proved for 3-uniform hypergraphs. Here we extend this result to k-uniform hypergraphs for any integer k ≥ 3. As in the 3-uniform case, the main new tool which we prove and use is an embedding lemma for k-uniform hypergraphs of boun...

متن کامل

On Spanning Structures in Random Hypergraphs

In this note we adapt a general result of Riordan [Spanning subgraphs of random graphs, Combinatorics, Probability & Computing 9 (2000), no. 2, 125–148] from random graphs to random r-uniform hypergaphs. We also discuss several spanning structures such as cube-hypergraphs, lattices, spheres and Hamilton cycles in hypergraphs.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Discrete Math.

دوره 27  شماره 

صفحات  -

تاریخ انتشار 2013